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Abstract. Accurate segmenting nuclei instances is a crucial step in
computer-aided image analysis to extract rich features for cellular es-
timation and following diagnosis as well as treatment. While it still re-
mains challenging because the wide existence of nuclei clusters, along
with the large morphological variances among different organs make nu-
clei instance segmentation susceptible to over-/under-segmentation. Ad-
ditionally, the inevitably subjective annotating and mislabeling prevent
the network learning from reliable samples and eventually reduce the
generalization capability for robustly segmenting unseen organ nuclei.
To address these issues, we propose a novel deep neural network, namely
Contour-aware Informative Aggregation Network (CIA-Net) with multi-
level information aggregation module between two task-specific decoders.
Rather than independent decoders, it leverages the merit of spatial and
texture dependencies between nuclei and contour by bi-directionally ag-
gregating task-specific features. Furthermore, we proposed a novel smooth
truncated loss that modulates losses to reduce the perturbation from
outliers. Consequently, the network can focus on learning from reliable
and informative samples, which inherently improves the generalization
capability. Experiments on the 2018 MICCAI challenge of Multi-Organ-
Nuclei-Segmentation validated the effectiveness of our proposed method,
surpassing all the other 35 competitive teams by a significant margin.

1 Introduction

Digital pathology is nowadays playing a crucial role for accurate cellular esti-
mation and prognosis of cancer [18]. Specifically, nuclei instance segmentation
which not only captures location and density information but also rich morphol-
ogy features, such as magnitude and the cytoplasmic ratio, is critical in tumor
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diagnosis and following treatment procedures [23]. However, automatically seg-
menting the nuclei at instance-level still remains challenging due to several rea-
sons. First, the vast existence of nuclei occlusions and clusters can easily cause
over or under-segmentation, which impedes accurate morphological measure-
ments of nuclei instances. Second, the blurred border and inconsistent staining
makes images inevitable to contain indistinguishable instances, and hence intro-
duces subjective annotations and mislabeling, which is challenging to get robust
and objective results [8]. Third, the variability in cell appearance, magnitude,
and density among diverse cell types and organs requires the method to possess
good generalization ability for robust analysis.

Most of the earlier methods are based on thresholding and morphological op-
erations [3,10], which fail to find reliable threshold in the complex background.
While deep learning-based methods are generally more robust and have become
the benchmark for medical image segmentation [21,25,11]. For example, Chen et
al. [2] proposed a deep contour-aware network (DCAN) for the task of instance
segmentation that firstly harnesses the complementary information of contour
and instances to separate the attached objects. In order to utilize contour-specific
features to assist nuclei prediction, BES-Net [17] directly concatenates the out-
put contour features with nuclei features in decoders. However, it only learns
complementary information in nuclei branch but ignores the potentially reversed
benefits from nuclei to contour, which is more essential since contour appearance
is more complicated and has larger intra-variance than that of nuclei.

Another challenge is to eliminate the effect from inevitably noisy and sub-
jective annotations. Different training strategies and loss functions have been
proposed [9,24,6,19]. A bootstrapped loss [20] was proposed to rebalance the
loss weight by taking the consistency between the label and reliable output into
account. However, when dealing with noise labeling especially the mislabeling
nuclei, the network tends to predict probability with a high confidence score,
where the negative log-likelihood magnitude is non-trivial and cannot be appro-
priately adjusted by the consistent term. As we will show later (Sec. 2.3), these
outliers overwhelm others in loss calculation and dominate the gradient.

To address the issues mentioned above, we have following contributions in this
paper. 1). We propose an Information Aggregation Module (IAM) which enables
the decoders to collaboratively refine details of nuclei and contour by leveraging
the spatial and texture dependencies in bi-directionally feature aggregation. 2).
A novel smooth truncated Loss is proposed to modulate the outliers’ perturba-
tion in loss calculation, which endows the network with the ability to robustly
segment nuclei instances by focusing on learning informative samples. More-
over, eliminating outliers alleviates the network from overfitting on these noisy
samples, eventually enabling the network with better generalization capability.
3). We validate the effectiveness of our proposed Contour-aware Information
Aggregation Network (CIA-Net) with the advantages of pyramidal information
aggregation and robustness on Multi-Organ Nuclei Segmentation (MoNuSeg)
dataset with seven different organs, and achieved the 1st place on 2018 MICCAI
Challenge, demonstrating the superior performance of the proposed approach.
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Fig. 1. An overview of our proposed CIA-Net for nuclei instance segmentation.

2 Method

Fig. 1 presents overview of the CIA-Net, which is a fully convolutional network
(FCN) consisting of one densely connective encoder and two task-specific in-
formation aggregated decoders for refinement. To fully leverage the benefit of
complementary information from highly correlated tasks, instead of directly con-
catenating task-specific features, our method conducts a hierarchical refinement
procedure by aggregating multi-level task-specific features between decoders.

2.1 Densely Connected Encoder with Pyramidal Feature Extraction

To effectively train the deep FCN, dense connectivity is introduced in encoder [7].
In each Dense Module (DM), let xi denotes the output of the i-th layer, dense
connectivity can be described as xi = Fi([x1, x2, . . . , xi−1],Wi). It sets up direct
connections from any bottleneck layer to all subsequent layers by concatenation,
which not only effectively and efficiently reuses features but also benefits gradient
back-propagation in the deep network. Transition Module (TM) is added after
DM to reduce the spatial resolution and make the features more compact, which
contains a 1×1 convolution layer and an average pooling layer with a stride of 2.
Next, we hierarchically stack four DMs where each followed by a TM except the
last one. For each DM, it consists of {6, 12, 24, 16} bottleneck layers, respectively.

Inspired by feature pyramid network [13] which takes advantage of multi-scale
features for accurate object detection, we propose to make full use of pyrami-
dal features hierarchically by building multi-level lateral connections between
encoder and decoders. In this way, localization and texture information from
earlier layers can help the low-resolution while strong-semantic features refine
the details. The encoder features with {1/2, 1/4, 1/8} of original size are passed
through the lateral connections by a 1 × 1 convolution to reduce feature map
number and merged with the upsampled deeper features in decoders by summa-
tion operation, as shown in Fig. 2(a).



4 Y. Zhou et al.

Fig. 2. Detail structure of (a) Lateral Connected Refinement and (b) Information Ag-
gregation Module in proposed CIA-Net.

2.2 Bi-directional Feature Aggregation for Accurate Segmentation

Given that contour region encases the corresponding nuclei, it is intuitive that
nuclei and contour have high spatial and contextual relevance, which is helpful for
decoders to localize and focus on learning informative patterns. In other words,
the neural response from the specific kernel in nuclei branch can be considered as
an extra spatial or contexture cue for localizing contour to refine details and vice
versa. In this regard, we proposed Information Aggregation Module (IAM) which
aims at utilizing information from highly-correlated sub-tasks to bidirectionally
aggregate the task-specific features between two decoders. Fig. 2(b) shows the
details of IAM structure, it takes features after lateral connection as inputs, and
then selects and aggregates informative features for each sub-task.

To start the iteration, we attach a 3×3 convolution on the top of the encoder
to generate the coarsest feature maps. For each decoder, the feature mapsMi−1
from a higher level are upsampled by bilinear interpolation to double the resolu-
tion and added with high-resolution feature maps from encoder through lateral
connections (see Fig. 2(a)). After that, the IAM takes the merged maps Di−1 as
inputs and adds a 3 × 3 convolution without nonlinear activation to smoothen
and eliminate the grid effects. Then the smooth features are fed into the classifier
to predict multi-resolution score maps. Meanwhile, these task-specific features
are concatenated along the channel dimension and then passed through two par-
allel convolution layers to select and integrate the complementary informative
features Mi for further details refinement in the next iteration.

Besides, to prevent the network from relying on single level discriminative fea-
tures, deep supervision mechanism [4] is introduced at each stage to strengthen
learning of multi-level contextual information. This also benefits training of
deeper network architectures by shortening the back-propagation path.

2.3 Smooth Truncated Loss for Robust Nuclei Segmentation

The existence of blurred edge and inconsistent staining makes images inevitably
contain indistinguishable instances, which leads to subjective annotations such as
mislabelled objects and inaccurate boundary. Additionally, to enhance the abil-
ity to split attached nuclei, conventional practice is to preprocess the training
ground truth by subtracting the dilated contour mask, which is also suboptimal
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Fig. 3. Visualization of different loss functions (a) with γ = 0.2 and the cumulative
loss functions of normalized loss from foreground regions (b).

and has the risk of introducing noises. Both factors show that it is unavoidable
for pixel-wise nuclei annotations to contain imperfect labels, which is harmful
to network training from at least two aspects. Firstly, the inaccurate labeling
encountered during training has the tendency to overwhelm other regions in loss
calculation and dominate the gradients. This phenomenon is observed from the
sorted cumulative distribution function of normalized loss in Fig. 3(b) using a
converged model. Notice that top 10% samples account for more than 80% value
of cross-entropy loss, which prevents network learning from informative samples
during gradient back-propagation. Secondly, forcibly learning the subjective la-
beling would eventually push the network to particularly fit them and tend to
overfitting, which is even more pernicious when predicting unseen organ nuclei.
To handle the noisy and incomplete labeling, [20] proposed bootstrapped loss
(LBST ) to rebalance the loss weight by considering the consistency between the
label and reliable output. However, as can be seen in Fig. 3(b), when faced with
errors with low predicted probability, it cannot easily compensate for the loss
with non-trivial magnitude.

To solve this problem, our insight is to reduce outliers’ interference in train-
ing by modulating contribution in loss calculation. Under the premise of high
credibility of network prediction, the majority of outliers will lie in low predicted
probability regions and get large values of error. Inspired by Huber loss [5] for
robust regression, which is quadratic for small values of error and linear for large
values to decline the influence of outliers, we propose the prototype of loss func-
tion, namely Truncated Loss (LT ), which reduces the contribution of outliers
with high confidence prediction. Let pt denotes the predicted probability of the
ground truth, pt = p if t = 1 and pt = 1−p otherwise, in which t ∈ {0, 1} specifics
the ground truth label. Formally, the loss is truncated when the corresponding
pt is smaller than a threshold γ ∈ [0, 0.5]:

LT = −max(log(pt), log(γ)). (1)

The truncated loss only clips outliers with pt < γ, while preserves loss value for
the other. Intuitively, this operation adds a constraint of maximum contribution
in loss calculation from each pixel and hence can ease the gradient domination
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from outliers and benefit of learning the informative samples. However, in Eq. (1)
the derivative of LT at clipping point pt = γ is undefined. Meanwhile, the pertur-
bation of low pt prediction will not be reflected in loss calculation if we force the
loss value larger than the threshold to a constant, therefore the smoothed version
is preferred for optimization. In this regard, we propose Smooth Truncated Loss
LST :

LST =

{
− log(γ) + 1

2 (1− p2t
γ2 ), pt < γ

− log(pt), pt > γ
(2)

A quadratic function with the same value and derivative as negative log-
likelihood at the truncated point γ is used to modulate the loss weight for
outliers. By incorporating constraint for the loss magnitude, it reduces the con-
tribution of outliers, where the smaller pt, the more considerable modulation.
This, in turn, let the network discard the indistinguishable parts and focus on
informative and learnable regions. Furthermore, by reducing the influence of the
outlier samples that interferences the network training, it encourages the net-
work to predict with higher confidence scores and narrow the uncertain regions,
which is helpful for alleviating over-segmentation.

2.4 Overall Loss Function

Based on the proposed Smooth Truncated Loss, we can derive the overall loss
function. Note that the contour prediction is much more difficult than that of
nuclei due to irregularly curved form. In this case, the primary component of
regions with high loss is not by the outliers, but the inlier samples, and hence
utilizing truncated loss may confuse the network. Instead, we use Soft Dice Loss
to learn the shape similarity:

LDice = 1−
2
∑n
i=1 piqi∑n

i=1 p
2
i +

∑n
i=1 q

2
i

, (3)

where pi denotes the predicted probability of i-th pixel and qi denotes the cor-
responding ground truth. In sum, the total loss function for proposed CIA-Net
training is:

Ltotal = LST + λLDice + β‖W‖22, (4)

where the first and second terms calculate error from contour and nuclei pre-
diction respectively, and the third term is the weight decay. λ and β are hyper-
parameters to balance three components.

3 Experimental Results

3.1 Dataset and Evaluation Metrics

We validated our proposed method on MoNuSeg dataset of 2018 MICCAI chal-
lenge, which contains 30 images (size: 1000×1000 ) captured by The Cancer Ge-
nomic Atlas (TCGA) from whole slide images (WSIs) [12]. The dataset consists
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of breast, liver, kidney, prostate, bladder, colon and stomach containing both
benign and malignant cases, which is then divided into training set (Train), test
set1 from the same organs of training data (Test1 ) and test set2 from unseen
organs (Test2 ) with 14, 8 and 6 images, respectively. The Train contains 4 or-
gans - breast, kidney, liver and prostate with 4 images from each organ, the
Test1 includes 2 images from per organ mentioned in Train, and Test2 contains
2 images from each unseen organ, i.e., bladder, colon and stomach.

We employed Average Jaccard Index (AJI) [12] for comparison, which consid-
ers an aggregated intersection cardinality numerator and an aggregated union
cardinality denominator for all ground truth and segmented nuclei. Let G =
{G1, G2, . . . Gn} denotes the set of instance ground truths, S = {S1, S2, . . . Sm}
denotes the set of segmented objects and N denotes the set of segmented ob-

jects with none intersection to ground truth. AJI =

∑n
i=1Gi

⋂
Sj∑n

i=1Gi
⋃
Sj +

∑
k∈N Sk

,

where j = argmax
k

Gi
⋂
Sk

Gi
⋃
Sk

. F1-score (F1 =
2 · Precision ·Recall
Precision+Recall

) [2] is used

for nuclei instance detection performance evaluation and we also report it for
reference.

3.2 Implementation Details

We implemented our network using Tensorflow (version 1.7.0). The default pa-
rameters provided at https://github.com/pudae/tensorflow-densenet is used in
the Densenet backbone. Stain normalization method [16] was performed before
training. Data augmentations including crop, flip, elastic transformation and
color jitter were utilized. The outputs of nuclei and contour maps were first sub-
tracted and then the connected components were detected get the final results.
The network was trained on one NVIDIA TITAN Xp GPU with a mini-batch
size of three. We utilized the pre-trained DenseNet model [7] from ImageNet
to initialize the encoder. The hyper-parameters λ and β were set as 0.42 and
0.0001 to balance the loss and regularization. AdamW optimizer was used to op-
timize the whole network and learning rate was initialized as 0.001 and decayed
according to cosine annealing and warm restarts strategy [15].

3.3 Evaluation and Comparison

Effectiveness of contour-aware information aggregation architecture.
Firstly, we conduct a series of experiments to compare different informative
feature aggregation strategies in decoders: (1) Cell Profiler [1]: a python-based
software for computational pathology employing intensity thresholoding method.
(2) Fiji [22]: a Java-based software utilizing watershed transform nuclear seg-
mentation method. (3) CNN3 [12]: a 3-class FCN without deep dense connec-
tivity. (4) DCAN [2]: a deep FCN with multi-task learning strategy for objects
and contours. (5) PA-Net [14]: a modified path aggregation network by adding

https://github.com/pudae/tensorflow-densenet
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path augmentation in two independent decoders to enhance the instance seg-
mentation performance. (6) BES-Net [17]: the original boundary-enhanced seg-
mentation network which concatenated contour features with nuclei features to
enhance learning in boundary region. (7) CIA-Net w/o IAM : the proposed net-
work architecture with two independent decoders for nuclei and contour predic-
tion respectively, but without Information Aggregation Module in decoders. (8)
Proposed CIA-Net : Our Contour-aware Information Aggregation Network with
Information Aggregation Module between nuclei and contour decoders. Notice
that unless specified otherwise, we utilized the same encoder structure with pyra-
midal feature extraction strategy and loss functions to establish fair comparison.

Table 1. Performance comparison of different methods on Test1 (seen organ) and
Test2 (unseen organ).

Method
AJI F1-score

Test1 Test2 Test1 Test2

(1) Cell Profiler [1] 0.1549 0.0809 0.4143 0.3917

(2) Fiji [22] 0.2508 0.3030 0.6402 0.6978

(3) CNN3 [12] 0.5154 0.4989 0.8226 0.8322

(4) DCAN [2] 0.6082 0.5449 0.8265 0.8214

(5) PA-Net [14] 0.6011 0.5608 0.8156 0.8336

(6) BES-Net [17] 0.5906 0.5823 0.8118 0.7952

(7) CIA-Net w/o IAM 0.6106 0.5817 0.8279 0.8356

(8) Proposed CIA-Net 0.6129 0.6306 0.8244 0.8458

It is observed that all CNN-based approaches achieved much higher results
on all evaluation criterions than conventional approaches, highlighting the supe-
riority of deep learning based methods for segmentation related tasks. Moreover,
results from (4) to (8) have a striking improvement regarding the evaluation met-
ric of AJI on both Test1 and Test2 compared with (3), validating the efficacy
of dense connectivity structure, which is more powerful to leverage multilevel
features and mitigate gradient vanishing in training deep neural network. While
methods (4) to (7) achieved comparable performance on the evaluation perfor-
mance of Test1, the results from BES-Net and proposed CIA-Net w/o IAM
outperform others significantly on AJI of Test2, demonstrating the exploitation
of high spatial and context relevance between nuclei and contour can generate
task-specific features for assisting feature refinement between both tasks. This
can help enhance the generalization capability to unseen data. Meanwhile, in
comparison with BES-Net and proposed CIA-Net w/o IAM, our proposed net-
work CIA-Net further outperforms these two methods consistently regarding
the metric of AJI, achieving overall best performance and boosting results to
0.6306 on Test2 and 0.6129 on Test1. Different from BES-Net which directly
concatenates features in contour decoder to nuclei branch, the proposed CIA-
Net with IAM bi-directionally aggregating the task-specific features and passing
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them through parallel convolutions to iteratively aggregate informative features
in decoders. Therefore, it is a learnable procedure for network to find favorable
features, which mutually benefits two sub-tasks. Compared with the improve-
ment on AJI, the improvement on F1-score is less significant, this is because AJI
is a segment-based metric while F1-score is the detection-based metric.
Effectiveness of proposed Smooth Truncated loss. Toward the potential
of clinical application, the proposed method should be robust under the nu-
merous circumstances, especially for the diffused-chromatin and attached nuclei
in unseen organs, which is evaluated in Test2 set. We compare the results of
our proposed CIA-Net with four different functions: (1) LBCE : Binary Cross-
Entropy loss. (2) LBST : Soft Bootstrapped loss by rebalancing the loss weight.
(3) LT : Proposed Truncated loss without smoothing around truncated point,
i.e., Eq. (1). (4) LST : Proposed Smooth Truncated loss which utilizes quadratic
function as soft modulation, i.e., Eq. (2).

Loss
AJI F1-score

Test1 Test2 Test1 Test2

LBCE 0.6104 0.5934 0.8303 0.8433

LBST 0.6123 0.6058 0.8415 0.8260

LT 0.6133 0.6153 0.8377 0.8307

LST 0.6129 0.6306 0.8244 0.8458

Table 2. Comparison of proposed CIA-Net
with different loss functions.

Fig. 4. Results of varying γ for LT and
LST on Test2.

As can be seen in Table 2, the improvement of LBST compared to LBCE
is limited. Compared with first two rows, results from LT and LST outperform
others on Test2 consisting of unseen organs by a large margin (nearly 2.5% for
LST and 1% for LT ) regarding the metric of AJI, and are analogous on Test1.
The proposed LST achieved significant improvements in comparison with LT
on Test2, shows it is less sensitive on γ and has better generalization capability
on different organ images. The proposed Smooth Truncated loss introduces one
new hyper-parameter, the truncating parameter γ, which controls the starting
point of down-weighting outliers. When γ = 0, the loss function degenerates into
Binary Cross-entropy LBCE . As γ increases, more examples with pt lower than
γ are considered as outliers or less informative samples to down-weight in loss
calculation. Fig. 4 illustrates the influence of varying γ. We can see LST have a
striking overall improvement compared with LBST and LT . More importantly,
results from LST demonstrate less sensitivity for choosing different γ.

We visualize the nuclei heatmaps from setting different γ in LST (see Fig. 5)
to give an intuitive understanding of our proposed method. It is observed that
heatmaps trained by LBCE (Fig. 5(b)) contain massive blur and noise, which
is unfavorable for binarizing instances. As γ increases, the heatmaps turn to be
more concrete with less uncertain areas, which is of great significance for instance
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Fig. 5. Visualization of heatmaps in different γ values from Test2.

segmentation to prevent over-segmentation. While setting too large γ increases
the risk of under-segmentation, as can be seen in Fig. 5(f). This is because over
suppressing low pt region also penalties learning from informative inlier samples,
especially boundary regions where the pt is relatively small.
2018 MICCAI MoNuSeg Challenge results. We employed above entire
dataset for training and 14 additional images provided by organizer for inde-
pendent evaluation with ground truth held out1. Top 20 results of 36 teams are
shown in Fig. 6. Our submitted entry surpassed all the other methods, high-
lighting the strength of the proposed CIA-Net and Smooth Truncated loss.

Fig. 6. The instance segmentation results of different methods in 2018 MICCAI Multi-
Organ Nuclei Segmentation Challenge (top 20 of 36 methods are shown in figure).

Qualitative analysis. Fig. 7 shows representative samples from Test1 and
Test2 with challenging cases such as diffuse-chromatin nuclei and irregular shape.
Notice that our proposed CIA-Net (Fig. 7(e)) can generate the segmentation
results similar to the annotations of human experts, outperforming others with
less over or under-segmentation on the prolific nuclei clusters and attached cases.

4 Conclusion

Instance-level nuclei segmentation is the pivotal step for cell estimation and fur-
ther pathological analysis. In this paper, we propose CIA-Net with the smooth

1 https://monuseg.grand-challenge.org

https://monuseg.grand-challenge.org
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Fig. 7. Qualitative results of multi-organ nuclei (from top to bottom: breast, kidney,
colon) on Test1 and Test2. Yellow rectangles highlight the difference among predictions.

truncated loss to tackle the challenges of prolific nuclei clusters and inevitable
labeling noise in pathological images. Our method inherently can be adapted
to a wide range of medical image segmentation tasks to boost the performance
such as histology gland segmentation.
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